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(57) ABSTRACT

Methods and systems for training a neural network to
identify an electric vehicle based on audio. Video data is
generated from a camera with a field of view including a
roadway. Audio data is generated from a microphone, the
audio data associated with vehicles traveling across the
roadway. The video data is segmented into segments, each
having a start time and a finish time that corresponds to a
respective vehicle traveling across the roadway in and out of
the field of view. Each video segment is labeled with a label

(2022.01) indicating the respective vehicle in that segment as either an
(2022.01) electric vehicle or a non-electric vehicle. The audio data is
(2022.01) segmented into segments, each having a start time and end
(2022.01) time associated with a respective one of the video segments.
(2006.01) A neural network is trained based on the audio segments and
(2006.01) the labels of the associated video segments.
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METHODS AND SYSTEMS FOR
CLASSIFYING VEHICLES AS ELECTRIC OR
NONELECTRIC BASED ON AUDIO

TECHNICAL FIELD

[0001] The present disclosure relates to methods and sys-
tems for classifying vehicles as electric or non-electric based
on audio.

BACKGROUND

[0002] Internet of Things (IoT) systems based on machine
and deep-learning algorithms are becoming pervasive in
both industrial and consumer applications. The commercial
success of such systems is strongly related to meeting
expectations for accuracy, precision, recall, and coverage.
The development of highly accurate deep-learning systems
is directly influenced by the availability of a large and varied
collection of training and evaluation data. A wide variety of
evaluation data is necessary to assess the performance of a
system before it is manufactured and deployed. A large
amount of labeled data is key to training complex and large
deep-learning models capable of meeting the desired levels
of performance.

SUMMARY

[0003] In embodiments, methods and systems for training
a neural network to identity an electric vehicle based on
audio are provided. Video data is generated from a camera
with a field of view including a roadway. Audio data is
generated from a microphone, the audio data associated with
vehicles traveling across the roadway. The video data is
segmented into segments, each having a start time and a
finish time that corresponds to a respective vehicle traveling
across the roadway in and out of the field of view. Each
video segment is labeled with a label indicating the respec-
tive vehicle in that segment as either an electric vehicle or
a non-electric vehicle. The audio data is segmented into
segments, each having a start time and end time associated
with a respective one of the video segments. A neural
network is trained based on the audio segments and the
labels of the associated video segments.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] FIG. 1 generally illustrates a system for training a
neural network according to an embodiment of the present
disclosure.

[0005] FIG. 2 generally illustrates a computer-imple-
mented method for training and utilizing a neural network
according to an embodiment of the present disclosure.
[0006] FIG. 3A generally illustrates an audio/video data
labeling system according to an embodiment of the present
disclosure.

[0007] FIG. 3B generally illustrates a portion of a data
capturing system according to the principles of the present
disclosure.

[0008] FIG. 3C generally illustrates an alternative audio/
video data labeling system, according to an embodiment of
the present disclosure.

[0009] FIG. 4 generally illustrates a schematic of a system
for training a neural network to identify an electric vehicle
based on audio, according to an embodiment.
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[0010] FIG. 5 generally illustrates a block diagram show-
ing an overall schematic of a system for training a neural
network to identify an electric vehicle based on audio,
according to an embodiment.

[0011] FIG. 6 generally illustrates a flow chart of a method
of training a neural network to identify an electric vehicle
based on audio, according to an embodiment.

DETAILED DESCRIPTION

[0012] Embodiments of the present disclosure are
described herein. It is to be understood, however, that the
disclosed embodiments are merely examples and other
embodiments can take various and alternative forms. The
figures are not necessarily to scale; some features could be
exaggerated or minimized to show details of particular
components. Therefore, specific structural and functional
details disclosed herein are not to be interpreted as limiting,
but merely as a representative bases for teaching one skilled
in the art to variously employ the embodiments. As those of
ordinary skill in the art will understand, various features
illustrated and described with reference to any one of the
figures can be combined with features illustrated in one or
more other figures to produce embodiments that are not
explicitly illustrated or described. The combinations of
features illustrated provide representative embodiments for
typical application. Various combinations and modifications
of the features consistent with the teachings of this disclo-
sure, however, could be desired for particular applications or
implementations.

[0013] “A”, “an”, and “the” as used herein refers to both
singular and plural referents unless the context clearly
dictates otherwise. By way of example, “a processor” pro-
grammed to perform various functions refers to one proces-
sor programmed to perform each and every function, or
more than one processor collectively programmed to per-
form each of the various functions.

[0014] IoT systems based on deep-learning algorithms are
becoming pervasive in both industrial and consumer appli-
cations. The commercial success of such systems is strongly
related to meeting customers’ expectations in terms of
accuracy, precision, recall, and coverage. The development
of highly accurate deep-learning systems is directly influ-
enced by the availability of a large and varied collection of
training and evaluation data. A wide variety of evaluation
data is necessary to assess the performance of a system
before it is manufactured and deployed in the wild. A large
amount of labeled data is key to training complex and large
deep-learning models capable of meeting the desired levels
of performance

[0015] The success of deep-learning solutions in real-
world applications is highly related to the quality of data in
performing the tasks they are designed for. When it comes
to training and evaluating deep-learning systems, acquiring
varied and large quantities of labeled data may be necessary
to train the system effectively, and evaluate its performance
under a variety of conditions.

[0016] At the same time, making sense of sounds is one of
the growing topics in the Artificial Intelligence (Al) com-
munity. In several Al pipelines, specifically deep-learning-
based ones, having access to large amount of labeled data is
key to successfully tackling the task at hand. However, audio
data collection and annotation are much more challenging
compared to other domains such as vision, text etc.
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[0017] Additionally, there are several reasons why it might
be useful to identify whether vehicles (cars, trucks, SUVs,
etc.) traveling on a particular road are electric vehcles (EVs)
or non-electric vehicles (e.g., vehicles with internal com-
bustion engines, ICEs). For example, understanding the
proportion of electric vehicles versus non-electric vehicles
can provide valuable data for assessing the environmental
impact of transportation in that area. It allows for calcula-
tions regarding emissions reductions, carbon footprint, and
overall pollution levels. Moreover, the identification of EVs
versus non-EVs can help in planning and deploying the
necessary infrastructure. For instance, if there’s a high
concentration of electric vehicles, there might be a need for
more electric charging stations or different maintenance
protocols for roads due to the differing weights and patterns
of electric versus non-electric vehicles. Governments or
local authorities may also use this information to shape
policies, incentives, or regulations related to transportation.
For instance, they might offer incentives for electric vehicle
owners, such as parking discounts, toll exemptions, or other
benefits to promote the adoption of cleaner transportation.
Knowing the distribution of electric vehicles can also help in
managing traffic flow. For instance, some areas might con-
sider creating specific lanes or zones for electric vehicles,
promoting smoother traffic patterns and reducing conges-
tion.

[0018] This invention report discloses an audio-video data
collection and labeling scheme to overcome some of these
challenges. Also provided is a novel classification model to
differentiate electric vehicles from non-electric vehicles that
pass by or drive over a roadway. In embodiments, a tandem
or synchronized camera and microphone array data collec-
tion setup is installed and configured to advance the vision
domain to automatically label the vehicles appearing in the
video. The proposed setup can be expanded to a combination
of microphone array and other sensors that would provide
automatic labeling for moving sound sources.

[0019] FIG. 1 shows a system 100 for training a neural
network (e.g., of an ML model). The system 100 may be
configured to (and/or include circuitry configured to) imple-
ment the systems and methods of the present disclosure
described below in more detail. The system 100 may com-
prise an input interface for accessing training data 102 for
the neural network. For example, as illustrated in FIG. 1, the
input interface may be constituted by a data storage interface
104 which may access the training data 102 from data
storage 106. For example, the data storage interface 104 may
be a memory interface or a persistent storage interface, e.g.,
a hard disk or an SSD interface, but also a personal, local or
wide area network interface such as a Bluetooth, Zigbee or
Wi-Fi interface or an ethernet or fiberoptic interface. The
data storage 106 may be an internal data storage of the
system 100, such as a hard drive or SSD, but also external
data storage, e.g., network-accessible data storage.

[0020] In some embodiments, the data storage 106 may
further comprise a data representation 108 of an untrained
version of the neural network which may be accessed by the
system 100 from the data storage 106. It will be appreciated,
however, that the training data 102 and the data represen-
tation 108 of the untrained neural network may also each be
accessed from different data storage, e.g., via a different
subsystem of the data storage interface 104. Each subsystem
may be of a type as is described above for the data storage
interface 104.

Jul. 3, 2025

[0021] In some embodiments, the data representation 108
of the untrained neural network may be internally generated
by the system 100 on the basis of design parameters for the
neural network, and therefore may not explicitly be stored
on the data storage 106. The system 100 may further
comprise a processor subsystem 110 which may be config-
ured to, during operation of the system 100, provide an
iterative function as a substitute for a stack of layers of the
neural network to be trained. Here, respective layers of the
stack of layers being substituted may have mutually shared
weights and may receive, as input, an output of a previous
layer, or for a first layer of the stack of layers, an initial
activation, and a part of the input of the stack of layers.

[0022] The processor subsystem 110 may be further con-
figured to iteratively train the neural network using the
training data 102. Here, an iteration of the training by the
processor subsystem 110 may comprise a forward propaga-
tion part and a backward propagation part. The processor
subsystem 110 may be configured to perform the forward
propagation part by, amongst other operations defining the
forward propagation part which may be performed, deter-
mining an equilibrium point of the iterative function at
which the iterative function converges to a fixed point,
wherein determining the equilibrium point comprises using
a numerical root-finding algorithm to find a root solution for
the iterative function minus its input, and by providing the
equilibrium point as a substitute for an output of the stack of
layers in the neural network.

[0023] The system 100 may further comprise an output
interface for outputting a data representation 112 of the
trained neural network, this data may also be referred to as
trained model data 112. For example, as also illustrated in
FIG. 1, the output interface may be constituted by the data
storage interface 104, with said interface being in these
embodiments an input/output (‘10’) interface, via which the
trained model data 112 may be stored in the data storage 106.
For example, the data representation 108 defining the
“untrained’ neural network may, during or after the training,
be replaced, at least in part by the data representation 112 of
the trained neural network, in that the parameters of the
neural network, such as weights, hyperparameters and other
types of parameters of neural networks, may be adapted to
reflect the training on the training data 102. This is also
illustrated in FIG. 1 by the reference numerals 108, 112
referring to the same data record on the data storage 106. In
some embodiments, the data representation 112 may be
stored separately from the data representation 108 defining
the ‘untrained’ neural network. In some embodiments, the
output interface may be separate from the data storage
interface 104, but may in general be of a type as described
above for the data storage interface 104.

[0024] FIG. 2 depicts a data annotation/augmentation sys-
tem 200 configured to (and/or including circuitry configured
to) implement a system for annotating, labeling, and/or
augmenting data. The data annotation system 200 may
include at least one computing system 202 configured to
implement all or portions of the systems and methods of the
present disclosure explained below in more detail. The
computing system 202 may include at least one processor
204 that is operatively connected to a memory unit 208. The
processor 204 may include one or more integrated circuits
that implement the functionality of a central processing unit
(CPU) 206. The CPU 206 may be a commercially available
processing unit that implements an instruction set such as
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one of the x86, ARM, Power, or MIPS instruction set
families. Various components of the system 200 may be
implemented with same or different circuitry.

[0025] During operation, the CPU 206 may execute stored
program instructions that are retrieved from the memory unit
208. The stored program instructions may include software
that controls operation of the CPU 206 to perform the
operation described herein. In some embodiments, the pro-
cessor 204 may be a system on a chip (SoC) that integrates
functionality of the CPU 206, the memory unit 208, a
network interface, and input/output interfaces into a single
integrated device. The computing system 202 may imple-
ment an operating system for managing various aspects of
the operation.

[0026] The memory unit 208 may include volatile memory
and non-volatile memory for storing instructions and data.
The non-volatile memory may include solid-state memories,
such as NAND flash memory, magnetic and optical storage
media, or any other suitable data storage device that retains
data when the computing system 202 is deactivated or loses
electrical power. The volatile memory may include static
and dynamic random-access memory (RAM) that stores
program instructions and data. For example, the memory
unit 208 may store a machine-learning model 210 (e.g.,
represented in FIG. 2 as the ML, Model 210) or algorithm,
a training dataset 212 for the machine-learning model 210,
raw source dataset 216, etc.

[0027] The computing system 202 may include a network
interface device 222 that is configured to provide commu-
nication with external systems and devices. For example, the
network interface device 222 may include a wired and/or
wireless Ethernet interface as defined by Institute of Elec-
trical and Electronics Engineers (IEEE) 802.11 family of
standards. The network interface device 222 may include a
cellular communication interface for communicating with a
cellular network (e.g., 3G, 4G, 5G). The network interface
device 222 may be further configured to provide a commu-
nication interface to an external network 224 or cloud.

[0028] The external network 224 may be referred to as the
world-wide web or the Internet. The external network 224
may establish a standard communication protocol between
computing devices. The external network 224 may allow
information and data to be easily exchanged between com-
puting devices and networks. One or more servers 230 may
be in communication with the external network 224.

[0029] The computing system 202 may include an input/
output (I/O) interface 220 that may be configured to provide
digital and/or analog inputs and outputs. The /O interface
220 may include additional serial interfaces for communi-
cating with external devices (e.g., Universal Serial Bus
(USB) interface).

[0030] The computing system 202 may include a human-
machine interface (HMI) device 218 that may include any
device that enables the system 200 to receive control input.
Examples of input devices may include human interface
inputs such as keyboards, mice, touchscreens, voice input
devices, and other similar devices. The computing system
202 may include a display device 232. The computing
system 202 may include hardware and software for output-
ting graphics and text information to the display device 232.
The display device 232 may include an electronic display
screen, projector, printer or other suitable device for dis-
playing information to a user or operator. The computing
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system 202 may be further configured to allow interaction
with remote HMI and remote display devices via the net-
work interface device 222.

[0031] The system 200 may be implemented using one or
multiple computing systems. While the example depicts a
single computing system 202 that implements all of the
described features, it is intended that various features and
functions may be separated and implemented by multiple
computing units in communication with one another. The
particular system architecture selected may depend on a
variety of factors.

[0032] The system 200 may implement a machine-learn-
ing model 210 that is configured to analyze the raw source
dataset 216. For example, the CPU 206 and/or other cir-
cuitry may implement the machine-learning model 210. The
raw source dataset 216 may include raw or unprocessed
sensor data that may be representative of an input dataset for
a machine-learning system. The raw source dataset 216 may
include video, video segments, images, audio, text-based
information, and raw or partially processed sensor data (e.g.,
radar map of objects). In some embodiments, the machine-
learning model 210 may be a deep-learning or neural
network algorithm that is designed to perform a predeter-
mined function. For example, the neural network algorithm
may be configured to identify events or objects in video
segments based on audio data.

[0033] The computer system 200 may store the training
dataset 212 for the machine-learning model 210. The train-
ing dataset 212 may represent a set of previously constructed
data for training the machine-learning model 210. For
example, the training dataset 212 according to the present
disclosure may include multiple automatically-collected
ground-truth measurements and associated data. The train-
ing dataset 212 may be used by the machine-learning model
210 to learn weighting factors associated with a neural
network algorithm. The training dataset 212 may include a
set of source data that has corresponding outcomes or results
that the machine-learning model 210 tries to duplicate via
the learning process.

[0034] The machine-learning model 210 may be operated
in a learning mode using the training dataset 212 as input.
The machine-learning model 210 may be executed over a
number of iterations using the data from the training dataset
212. With each iteration, the machine-learning model 210
may update internal weighting factors based on the achieved
results. For example, the machine-learning model 210 can
compare output results (e.g., annotations) with those
included in the training dataset 212. Since the training
dataset 212 includes the expected results, the machine-
learning model 210 can determine when performance is
acceptable. After the machine-learning model 210 achieves
a predetermined performance level (e.g., 100% agreement
with the outcomes associated with the training dataset 212),
the machine-learning model 210 may be executed using data
that is not in the training dataset 212. The trained machine-
learning model 210 may be applied to new datasets to
generate annotated data.

[0035] The machine-learning model 210 may be config-
ured to identify a particular feature in the raw source data
216. The raw source data 216 may include a plurality of
instances or input dataset for which annotation results are
desired (e.g., a video stream or segment including audio
data). For example only, the machine-learning model 210
may be configured to identify objects or events in a video
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segment based on audio data and annotate the events. The
machine-learning model 210 may be programmed to process
the raw source data 216 to identify the presence of the
particular features. The machine-learning model 210 may be
configured to identify a feature in the raw source data 216 as
a predetermined feature. The raw source data 216 may be
derived from a variety of sources. For example, the raw
source data 216 may be actual input data collected by a
machine-learning system. The raw source data 216 may be
machine generated for testing the system. As an example,
the raw source data 216 may include raw video and/or audio
data from a camera, audio data from a microphone, etc.

[0036] In an example, the machine-learning model 210
may process raw source data 216 and output video and/or
audio data including one or more indications of an identified
event. The machine-learning model 210 may generate a
confidence level or factor for each output generated. For
example, a confidence value that exceeds a predetermined
high-confidence threshold may indicate that the machine-
learning model 210 is confident that the identified event (or
feature) corresponds to the particular event. A confidence
value that is less than a low-confidence threshold may
indicate that the machine-learning model 210 has some
uncertainty that the particular feature is present.

[0037] As is generally illustrated in FIGS. 3A and 3B, a
system 300 may include an image (e.g., video) capturing
device 302, an audio capturing array 304, and the computing
system 202. The system may receive, from the image
capturing device 302, video stream data associated with a
data capture environment. The system 202 may be config-
ured to perform video object detection to identify one or
more objects (e.g., a vehicle) in corresponding images of the
video stream data, and can optionally be equipped with a
classification model or labeling model that can label the
identified vehicle as either an EV or a non-EV based upon
some given or learned database of images of EV and/or
non-EV vehicles. The system 202 may receive, from the
audio capturing array 304, audio stream data that corre-
sponds to at least a portion of the video stream data. The
audio capturing array 304 may include one or more micro-
phones 306 or other suitable audio capturing devices. The
systems and methods described herein may be configured to
label, using output from at least a first machine-learning
model (e.g., such as the machine-learning model 210 or
other suitable machine-learning model configured to provide
output including one or more object or event detection
predictions), at least some objects of the video stream data
and/or audio stream data.

[0038] The system 202 may calculate (e.g., using at least
one probabilistic-based function or other suitable technique
or function), based on at least one data capturing character-
istic, at least one offset value for at least a portion of the
audio stream data that corresponds to at least one labeled
object of the video stream data. The system 202 may
synchronize, using at least the at least one offset value, at
least a portion of the video stream data with the portion of
the audio stream data that corresponds to the at least one
labeled object of the video stream data. The at least one data
capturing characteristic may include one or more character-
istics of the at least one image capturing device, one or more
characteristics of the at least one audio capturing array, one
or more characteristics corresponding to a location of the at
least one image capturing device relative to the at least one
audio capturing array, one or more characteristics corre-
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sponding to a movement of an object in the video stream
data, one or more other suitable data capturing characteris-
tics, or a combination thereof.

[0039] The system 202 may label, using one or more
labels of the labeled objects of the video stream data and the
at least one offset value, at least the portion of the audio
stream data that corresponds to the at least one labeled object
of the video stream data. Each respective label may include
an event type, an event start indicator, and an event end
indicator. The system 202 may generate training data using
at least some of the labeled portion of the audio stream data.
The system 202 may train a second machine-learning model
using the training data. The system 202 may detect, using the
second machine-learning model, one or more sounds asso-
ciated with audio data provided as input to the second
machine-learning model.

[0040] In some embodiments, as is generally illustrated in
FIG. 3C, the computing system 202 may be configured to
label audio data based on sensor data received from one or
more sensors, such as those described herein or any other
suitable sensor or combination of sensors. The system 202
may receive, from the audio capturing array 354 or any
suitable audio capturing device, such as one or more of the
microphones 306 or other suitable audio capturing device,
audio stream data associated with a data capture environ-
ment. It should be understood that the audio capturing array
354 may include features similar to those of the audio
capturing array 304 and may include any suitable number of
audio capturing devices. The system 202 may receive, from
at least one sensor (e.g., such as the sensor 352) that is
asynchronous relative to the audio capturing array 354,
sensor data associated with the data capture environment.
The sensor 354 may include at least one of an induction coil,
a radar sensor, a LiDAR sensor, a sonar sensor, an image
capturing device, any other suitable sensor, or a combination
thereof. The audio capturing array 354 may be remotely
located from the sensor 354, proximately located to the
sensor 354, or located in any suitable relationship to the
sensor 354.

[0041] The system 202 may identify, using output from at
least a first machine learning model, such as the machine
learning model 210 or other suitable machine learning
model, at least some events in the sensor data. The machine
learning model 210 may be configured to provide output
including one or more event detection predictions based on
the sensor data. The system 202 may synchronize at least a
portion of the sensor data associated with the portion of the
audio stream data that corresponds to the at least one event
of the sensor data. The system 202 may label, using one or
more labels extracted for respective events of the sensor data
value, at least the portion of the audio stream data that
corresponds to the at least one event of the sensor data. Each
respective label may include an event type, an event start
indicator, and an event end indicator. The system 202 may
generate training data using at least some of the labeled
portion of the audio stream data. The system 202 may train
a second machine-learning model using the training data.
The system 202 may detect, using the second machine-
learning model, one or more sounds associated with audio
data provided as input to the second machine-learning
model. The second machine-learning model may include
any suitable machine-learning model and may be configured
to perform any suitable function.
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[0042] Any of the systems described above and/or below
in more detail may be configured to implement automated
collection of ground-truth data using multiple different sen-
sors to train a machine or deep learning model according to
the present disclosure. In one example, a microphone array
is installed at or near a roadway on which vehicles (e.g., both
EVs and non-EVs) travel. The roadway may be a highway,
urban road, intersection, parking lot, or any other suitable
roadway in which both EVs and non-EVs alike travel. An
image-based model is trained to identify and label a passing
vehicle as either an EV or non-EV. An audio-based model is
trained to understand detected sounds that correspond to the
vehicle passing by in the synchronized video data.

[0043] FIG. 4 illustrates a schematic view of a system 400
for training a neural network to identify an electric vehicle
based on audio, according to an embodiment. The system
400 includes an image sensor (e.g., camera 302) and an
audio sensor (e.g., microphone array 304, or one or more
microphones). The data generated by the camera 302 and
microphone(s) 304 is sent to computing system 202 for
processing as described herein. The camera 302 is posi-
tioned and installed at or near a roadway 402 so as to have
a field of view (FoV) 404 that includes a portion of the
roadway. The camera 302 can therefore generates images,
video, and associated data of vehicles 406 that pass by the
camera 302 on the roadway 402 within the FoV 404.
[0044] As vehicles 406 pass by, the camera 302 captures
video of the vehicles entering and exiting the FoV 404. This
data can be processed by the computing system 202 to
determine whether the vehicle in the image/video is an EV
or non-EV. For example, a classification model or other
object recognition model 210 may be utilized to compare the
images of the vehicle to stored images of other vehicles that
are known to be EVs or non-EVs. The classification model
can be a neural network such as a convolutional neural
network (CNN), Residual Neural Network (ResNet), a pre-
trained model with large datasets like ImageNet, or the like.
This model may be a pretrained object recognition model
configured to automatically track and label the objects in the
video stream as either an EV or non-EV vehicle. Based on
the comparison of the image of the vehicle 406 to the
database of images, the classification model can then deter-
mine whether the vehicle 406 in the FoV 404 is an EV or a
non-EV.

[0045] Meanwhile, the audio sensor (e.g., microphone
array 304, microphone 306) can be installed nearby to
generate audio data relating to the vehicles passing by on the
roadway 402. The audio sensor can be synchronized with the
camera 302 so that the moments that the vehicle 406 enters
and exits the FoV 404 can be logged and corresponded with
the associated sound data of that moment. This allows a
segment of audio data to be developed, with its segment
corresponding to the segment of video data in which the
vehicle 406 is in the FoV 404.

[0046] This data can be processed by the computing
system 202 to train a machine learning model to understand
and recognize sounds of an EV. In particular, the system 202
understands based on object recognition that a particular
vehicle passing by is an EV. Since the sound data is
synchronized with the video data, the system can segment or
isolate the audio data that corresponds to when the EV is in
the FoV. This data can be used as training data to train an
audio-based neural network to learn sounds that correspond
to EVs. For example, feature generation can be implemented
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in which relevant information or characteristics (features)
from the audio data are extracted and used as input for the
machine learning algorithms.

[0047] Rejection of non-related auditory cues can be criti-
cal for the task of isolating the sound of the passing-by
vehicle for labeling that particular noise as being associated
with an EV or non-EV. For example, noise from other
vehicles, horns, traffic, and the like, if not handled, has the
potential to reduce the accuracy of the model. With a
multi-array microphone system, beam forming techniques
can be used to narrow the received reflection within an
acceptable range. With a single array system, other noise
isolation techniques can be used to reject the non-related
noise events other than the vehicles that pass by.

[0048] FIG. 5 illustrates a block diagram showing an
overall schematic of a system 500 for training a neural
network to identify an electric vehicle based on audio,
according to an embodiment. The system 500 may be
implemented or executed by one or more components of the
computer systems disclosed herein. A camera, such as
camera 302, is configured to generate video and associated
data (generally referred to as image data) associated with a
FoV in which vehicles drive through. Meanwhile, a micro-
phone or microphone array (generally referred to as one or
more microphones) 304 is configured to generate audio or
audio data associated with the vehicles driving by.

[0049] The video or image data is sent to a neural network
or machine learning model for segmentation, generally
shown at 502. The model can be one of the models or neural
networks described herein, such as, for example, a pre-
trained object recognition model configured to automatically
track and label the objects in the video stream as either an
EV or non-EV vehicle. The model can generate metadata
associated with the objects detected in the video stream,
including a time when the vehicle enters the scene or field
of view of the camera (shown at 504) and a time when the
vehicle exits the scene or field of view of the camera (shown
at 506). The portion of the video between the start time 504
and the end time 506 can be isolated, segmented, clipped,
and labeled accordingly so that it can be referred to and
recalled later.

[0050] For identification and labeling of the vehicles in the
video (e.g., as EV or non-EV), the neural network or
machine learning model can rely on one or more computer
vision models configured to identify and categorize objects
within the images or video generated by the image sensor.
The model can rely on and implement neural networks and
deep learning techniques, such as convolutional neural net-
works (CNNs) for example.

[0051] In one embodiment, the machine learning model
includes an object detection and classification model such as
MobileNet, e.g., MobileNetV1, MobileNetV2, Mobile-
NetV3, etc. MobileNet is configured for mobile and embed-
ded vision applications and employs depthwise separable
convolutions to reduce computation while preserving accu-
racy. With depthwise separable convolutions, MobileNet
separates standard convolutions into two layers—depthwise
convolutions and pointwise convolutions—to reduce the
number of parameters and computational complexity. With
depthwise convolution, it applies a single filter to each input
channel separately. With pointwise convolution, it performs
a 1x1 convolution to combine the outputs of depthwise
convolutions across channels. As the image passes through
the network, each layer extracts and transforms the input
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into higher-level representations. These representations
gradually encode more complex and abstract features of the
image. MobileNet can also utilize Rectified Linear Unit
(ReLLU) activation functions after most layers of the neural
network, which, combined with batch normalization, aids in
the training process and network performance. The final
layers (or layers after the convolutional layers) of the neural
network can include a global average pooling layer and a
fully connected layer to perform classification. This aver-
ages the feature maps spatially, reducing the spatial dimen-
sions and aggregating the important features. Finally, the
processed features from the convolutional layers are fed into
fully connected layers, followed by a softmax activation
function. The softmax function outputs a probability distri-
bution over the predefined classes/categories.

[0052] During training, MobileNet is trained on a dataset
with labeled images using techniques like backpropagation
and gradient descent. It learns to adjust its parameters
(weights and biases) to minimize the difference between
predicted and actual labels.

[0053] During inference (e.g., when the model is deployed
to classify new, unseen images such as images of the
surveillance scene), the trained MobileNet takes an image as
input and performs forward propagation through its layers to
generate predictions. The output includes of class probabili-
ties, indicating the likelihood of the input image belonging
to different predefined classes.

[0054] In another embodiment, the machine learning
model includes an object detection and classification model
such as You Only Look Once (YOLO), such as YOLOvI,
YOLOv2, YOLOvV3, etc. YOLO is an object detection and
classification model that not only localizes object within an
image but also classifies them. YOLO divides the input
image into a grid of cells. Each cell in the grid is responsible
for predicting bounding boxes and class probabilities.
Unlike some other object detection methods, YOLO per-
forms predictions directly on this grid in one pass through
the network. Anchor boxes (e.g., predetermined bounding
box shapes and sizes) can be relied upon to assist in
predicting accurate bounding box coordinates for objects of
various shapes and sizes within each grid cell. Rather than
using multiple stages or region proposals, YOLO makes
predictions for bounding boxes and class probabilities
directly from the grid cells in a single pass through the
network. Each grid cell predicts multiple bounding boxes
along with class probabilities for those boxes. The architec-
ture uses a backbone network (e.g., Darknet-53 in YOLOvV3)
to extract features from the input image. These features are
passed through convolutional layers to capture both low-
level and high-level features. Convolutional layers within
the network learn to predict bounding box coordinates (e.g.,
X, y, width, height) relative to the grid cells. YOLO predicts
bounding boxes with respect to each grid cell, combining
predictions across the entire image. In addition to bounding
box predictions, YOLO assigns class probabilities to each
bounding box. It predicts the probability of each predefined
class for each bounding box, indicating the likelihood that
the detected object belongs to a specific class.

[0055] During training, YOLO optimizes its parameters
by minimizing a combined loss function, which includes
components for localization error (bounding box coordi-
nates) and classification error (class probabilities). Tech-
niques like backpropagation and gradient descent are used to
update the neural network’s weights.
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[0056] During inference, YOLO takes an input image,
passes it through the trained network, and generates bound-
ing boxes along with class probabilities for objects detected
within the image.

[0057] Pretrained classes can be relied upon by the
machine learning model, and can include, for example,
identification of an object as a vehicle, and identification of
that vehicle as either an electric vehicle or a non-electric
vehicle based upon a stored database of both types of
vehicles.

[0058] Using such machine learning models described
herein, the system 500 labels the video segment at 508. In
particular, the metadata generated by the model associated
with the video segment can include a label on the detected
and identified vehicle. Such label can include an identifica-
tion that the vehicle is an EV at 510, or an identification that
the vehicle is a non-EV at 512. Each identification can come
with a confidence or probably score as determined by the
machine learning model.

[0059] The labeled image or video data can then yield
training data labels at 514. In other words, the video seg-
ments and/or associated images within the video, along with
the labeled data indicating the identified vehicle is an EV or
non-EV, can provide training data for the machine learning
model 516.

[0060] Additionally, the video segment between the start
time 504 and the end time 506 in which the vehicle is in the
field of view is segmented and isolated at 518 for audio
analysis. In particular, a machine learning model can process
the audio data generated by the microphone 304 during the
time between the start time 504 and the end time 506. In
particular, feature generation at 520 can be implemented,
according to the teachings provided elsewhere herein. In
embodiments, the feature generation 520 can refer to the
process of extracting relevant information or characteristics
(features) from the audio data that can be used as input for
the machine learning algorithms. These extracted features
are used for training the models to perform various tasks
such as classification, segmentation, sound event detection,
or other audio-related tasks described herein. Feature gen-
eration can involve converting the raw or preprocessed
audio signals into a set of numeric features that capture
different aspects of the audio content. The techniques used
for feature generation can include spectrogram generation,
which involves transforming the audio signal into a spec-
trogram which represents the frequency content of the signal
over time. This can involve performing a Short-Time Fou-
rier Transform (STFT) or other time-frequency analysis to
create a 2D matrix of intensity values corresponding to
different frequencies at each time frame. The feature gen-
eration can also include Mel-Frequency Cepstral Coeffi-
cients (MFCCs) (e.g., FIG. 5B) which involves taking the
log of the power spectrum of the audio signal at specific
Mel-spaced frequency bands. In either embodiment, once
these features are extracted, they can form a numerical
representation of the audio signal, enabling machine learn-
ing algorithms to learn patterns and relationships within the
data for specific tasks. The result of the feature generation is
training data input 522, which can be used to train the
machine learning model at 516 to perform the segmentation,
labeling, feature generation, and the like.

[0061] The training of the machine learning model at 516
can be based on the training data labels 514 from the video
data, and the training data input 522 from the audio data. In
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embodiments, video segments themselves are not utilized in
training the machine learning model 516. Rather, the audio
data used for training the model is associated with a label
(e.g., EV or non-EV) which is generated using computer
vision techniques described herein. Therefore, once the
machine learning model is trained with the audio data and
the associated labels, it can determine whether a passing-by
vehicle is an electric vehicle or a non-electric vehicle based
on audio alone (i.e., without the need for video processing).
[0062] FIG. 6 illustrates a method 600 for training a neural
network to identify an electric vehicle based on audio,
according to an embodiment. The method 600 can be
performed by any of the systems described herein, such as
computing system 202, and can be on or with one or more
of the machine learning models described herein.

[0063] At 602, video data or image data is generated. In an
embodiment, a camera or other image sensor is placed at or
near a roadway, and has a field of view that includes at least
part of the roadway. The video data includes vehicles
traveling across the roadway, into and out of the field of
view.

[0064] At 604, audio data is generated, for example by one
or more microphone or microphone array as described
herein. The microphone(s) can be positioned at or near a
roadway so as to capture sounds emitted by vehicle that
drive across the roadway near the microphone(s). This audio
data can be raw audio data, or preprocessed (e.g., denoise or
the like). The microphone can be positioned near or adjacent
the image sensor.

[0065] At 606, the generated video data or video is seg-
mented into a plurality of segments. Each segment includes
a start time and a finish time that correspond to a respective
vehicle traveling across the roadway within the field of view.
One or more object recognition models or computer vision
techniques described herein can be utilized to detect the
presence and location of a vehicle in the field of view. The
metadata associated with that detected vehicle can include a
time stamp of when the vehicle appears in the field of view
and when the vehicle leaves the field of view.

[0066] At 608, cach video segment is labeled indicating
the vehicle in that video segment as either an electric vehicle
or a non-electric vehicle. Various labeling schemes or tech-
niques can be utilized, such as those described herein. For
example, the neural network or machine learning model can
compare the detected vehicle to a database of vehicles with
labels, and match the detected vehicle to the class of vehicles
in the database. Each vehicle or audio segment is provided
with a label, such as EV or non-EV, depending on the
identified vehicle.

[0067] At 610, the audio data is segmented into a plurality
of' segments. The audio data is associated with the video data
such that each segment can correspond to a respective one
of the video data segments. As such, each audio data
segment can have a start time and an end time that corre-
spond to the start time and the finish time of the respective
video segment. The start time and the end time of the audio
segment may not necessarily be identical to the correspond-
ing start time and the end time of the video segment, but in
embodiments they are identical. Thus, each audio segment
corresponds to the noise detected by a vehicle as the vehicle
enters and exits the field of view of the image sensor.
[0068] At 612, a machine learning model or neural net-
work is trained to identify electric vehicles based on the
audio segments and the labels of the respective video

Jul. 3, 2025

segments. In other words, the audio data of a particular audio
segment, as well as the label of the video segment that is
associated with that particular audio segment, is fed into the
machine learning model. The model therefore associates the
sound emitted by the vehicle with a label of associated video
(and therefore representative of what that vehicle sounds
like, with a label associated with whether that vehicle is an
EV or a non-EV).

[0069] At 614, the training results in a trained neural
network configured to identify electric vehicles based on
audio, i.e., the sounds emitted by that vehicle. The neural
network may be fully trained once convergence of the
training data is met. Once trained, the model does not need
to rely on video data, as the video was used to create labels
associated with the audio that was used to train the model.

[0070] Teachings provided herein result an advancement
in the field due to the increased popularity of EVs in recent
years skyrocketing, putting millions of relatively silent
vehicles on the road. The systems disclosed herein rely
solely on passive acoustics which is resilient to future
changes in the vehicle industry as EVs are likely to consis-
tently sound the same or similar over the next generations of
vehicles. As more and more EV’s are quickly entering the
market, a camera-based system would need to be continu-
ously updated, trained, and redeployed in order to maintain
a high level of accuracy. In addition, the trained model can
be implemented in a variety of settings. For example, if
deployed at an intersection or roadway in which pedestrians
frequent, an alarm can be deployed warning pedestrians of
the upcoming presence of an EV traveling down the road-
way when the pedestrian may not be able to hear it. A
speaker or other type of alarm may be commanded to alert
pedestrians of the upcoming EV as detected by the machine
learning model executing on audio data.

[0071] Rejection of non-related auditory cues may be
critical for the disclosed system and further work can be
done in this domain to advance this technology from the
noise rejection and engine isolation perspective. With a
multi-array microphone system, beam forming techniques
can be used to narrow the received reflection within accept-
able range. With a single array system, other noise isolation
techniques can be used to reject all other noise events other
than the engine passing by.

[0072] While exemplary embodiments are described
above, it is not intended that these embodiments describe all
possible forms encompassed by the claims. The words used
in the specification are words of description rather than
limitation, and it is understood that various changes can be
made without departing from the spirit and scope of the
disclosure. As previously described, the features of various
embodiments can be combined to form further embodiments
of the invention that may not be explicitly described or
illustrated. While various embodiments could have been
described as providing advantages or being preferred over
other embodiments or prior art implementations with respect
to one or more desired characteristics, those of ordinary skill
in the art recognize that one or more features or character-
istics can be compromised to achieve desired overall system
attributes, which depend on the specific application and
implementation. These attributes can include, but are not
limited to cost, strength, durability, life cycle cost, market-
ability, appearance, packaging, size, serviceability, weight,
manufacturability, ease of assembly, etc. As such, to the
extent any embodiments are described as less desirable than
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other embodiments or prior art implementations with respect
to one or more characteristics, these embodiments are not
outside the scope of the disclosure and can be desirable for
particular applications.

What is claimed is:

1. A method for training a neural network to identify an
electric vehicle based on audio, the method comprising:

generating video data from a camera, wherein the camera

has a field of view of a roadway;

generating audio data from a microphone, wherein the

audio data is associated with vehicles traveling across
the roadway;
segmenting the video data into a plurality of video seg-
ments, wherein each video segment has a start time and
a finish time that corresponds to a respective vehicle
traveling across the roadway within the field of view;

based on the respective vehicle in each video segment,
labeling each video segment with label indicating the
respective vehicle as either an electric vehicle or a
non-electric vehicle;

segmenting the audio data into a plurality of audio seg-

ments, wherein each audio segment has a start time and
a finish time associated with that of a respective one of
the video segments;

training a neural network to identify electric vehicles

based on the audio segments and the labels of the
respective video segments; and

based on the training, outputting a trained neural network

configured to identify electric vehicles based on audio.

2. The method of claim 1, further comprising:

associating each audio segments with a respective one of

the labels;

wherein the training includes training the neural network

based on each audio segment and its respective label.
3. The method of claim 1, wherein the trained neural
network is configured to identify electric vehicles based on
audio and not video.
4. The method of claim 1, wherein the start time and the
finish time of each audio segment is identical to the start
time and finish time of the video segment.
5. The method of claim 1, wherein the microphone is
installed adjacent to the camera.
6. The method of claim 1, further comprising:
executing an object detection and classification machine
learning model to identify and classify the vehicles;

wherein the start time and the finish time associated with
each video segment is associated with the respective
vehicle entering the field of view and exiting the field
of view, respectively.

7. The method of claim 6, wherein the object detection
and classification machine learning model generates the
labels of each video segment based upon the classification of
the vehicles.

8. A system for training a neural network to identify an
electric vehicle based on audio, the system comprising:

an image sensor having a field of view of a roadway and

configured to generate video data;

an audio sensor configured to generate audio data asso-

ciated with vehicles traveling across the roadway; and

a processor in communication with the image sensor and

the audio sensor, the processor programmed to:
segment the video data into a plurality of video seg-
ments, wherein each video segment has a start time
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and a finish time that corresponds to a respective
vehicle traveling across the roadway within the field
of view;

based on the respective vehicle in each video segment,
label each video segment with label indicating the
respective vehicle as either an electric vehicle or a
non-electric vehicle;

segment the audio data into a plurality of audio seg-
ments, wherein each audio segment has a start time
and a finish time associated with that of a respective
one of the video segments;

train a neural network to identify electric vehicles
based on the audio segments and the labels of the
respective video segments; and

based on the training, output a trained neural network
configured to identify electric vehicles based on
audio.

9. The system of claim 8, wherein the processor is further
programmed to associate each audio segment with a respec-
tive one of the labels;

wherein the training of the neural network includes train-

ing the neural network based on each audio segment
and its respective label.
10. The system of claim 8, wherein the trained neural
network is configured to identify electric vehicles based on
audio and not video.
11. The system of claim 8, wherein the start time and the
finish time of each audio segment is identical to the start
time and finish time of the video segment.
12. The system of claim 8, wherein the audio sensor is
installed adjacent the image sensor.
13. The system of claim 8, wherein the processor is
further programmed to:
execute an object detection and classification machine
learning model to identify and classify the vehicles;

wherein the start time and the finish time associated with
each video segment is associated with the respective
vehicle entering the field of view and exiting the field
of view, respectively.

14. The system of claim 13, wherein the object detection
and classification machine learning model generates the
labels of each video segment based upon the classification of
the vehicles.

15. A non-transitory computer-readable storage medium
storing executable instructions that, when executed by one
or more processors, cause the processor to:

generate video data from a camera, wherein the camera

has a field of view of a roadway;

generate audio data from a microphone, wherein the audio

data is associated with vehicles traveling across the
roadway;

segment the video data into a plurality of video segments,

wherein each video segment has a start time and a finish
time that corresponds to a respective vehicle traveling
across the roadway within the field of view;

based on the respective vehicle in each video segment,

label each video segment with label indicating the
respective vehicle as either an electric vehicle or a
non-electric vehicle;

segment the audio data into a plurality of audio segments,

wherein each audio segment has a start time and a finish
time associated with that of a respective one of the
video segments;
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train a neural network to identify electric vehicles based
on the audio segments and the labels of the respective
video segments; and
based on the training, output a trained neural network
configured to identify electric vehicles based on audio.
16. The non-transitory computer-readable storage
medium of claim 15, wherein the executable instructions,
when executed by the one or more processors, cause the one
or more processors to:
associate each audio segments with a respective one of the
labels;
wherein the training includes training the neural network
based on each audio segment and its respective label.
17. The non-transitory computer-readable storage
medium of claim 15, wherein the trained neural network is
configured to identify electric vehicles based on audio and
not video.
18. The non-transitory computer-readable storage
medium of claim 15, wherein the start time and the finish
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time of each audio segment is identical to the start time and
finish time of the video segment.
19. The non-transitory computer-readable storage
medium of claim 15, wherein the executable instructions,
when executed by the one or more processors, cause the one
Or more processors to:
execute an object detection and classification machine
learning model to identify and classify the vehicles;

wherein the start time and the finish time associated with
each video segment is associated with the respective
vehicle entering the field of view and exiting the field
of view, respectively.

20. The non-transitory computer-readable storage
medium of claim 19, wherein the object detection and
classification machine learning model generates the labels of
each video segment based upon the classification of the
vehicles.



